STABILITY OF CAPILLARY JETS OF
ELASTICOVISCOUS FLUIDS

V. M. Entov UDC 532.522.5

The stability of a capillary jet of an elasticoviscous fluid with respect to small axisymmetric per-
turbations is investigated theoretically for two rheological models. It is shown that preliminary
tension makes the jet more stable.

The significant retardation of the dissociation of capillary jets of elasticoviscous fluids as compared
with jets of ordinary viscous fluids of comparable viscosity has been established by experiments [1-3]. At
the same time a theoretical analysis of the stability of an elasticoviscous fluid jet within the framework of
small perturbation theory {1] gives the opposite result, the rate of perturbation growth turns out to be higher
for an elasticoviscous fluid than for a Newtonian fluid of the same initial viscosity. It is shown below that this
contradiction can be eliminated if the fluid state, storing some preliminary strain, is taken as the unperturbed
state. This corresponds to experimental observations according to which the "hyperstability" of elastic fluid
jets is manifest after the formation of filaments experiencing strong extraction [1}].

§1, Let us examine the problem of the stability of a circular, initially homogeneous jet in a quasi-one-
dimensional approximation which corresponds to long~wavelength perturbations.

We have the conservation equations
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(9 is the fluid density and the x axis is directed along the jet axis).

Let us consider two models of an elasticoviscous fluid, i.e., two kinds of relationships between the
stresses and strains.

Let us initially take this relationship in the form used in [4]:
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The single nonzero velocity component in the approximation under consideration is the longitudinal velo
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Using the condition of no external pressure on the side surface of the jet, we have
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Here q is the capillary pressure.

We consequently obtain for s from (1.3)
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Equations (1.1), (1. 2) (1.8), and (1.9) form the fundamental system of equations of the quasi-one-dimen-
sional jet motion.

Let us consider small deviations from the fundamental state, corresponding to the state of a relaxing
"filament" for which we have

v=0,=0, s=s5,=S8"exp(—?0). f=f, (1.10)

Let the primes denote small deviations of the corresponding quantities from the fundamental state and let us
write the equations for the perturbations. We have
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We shall henceforth be interested in "fast" processes for which the characteristic time T ~ 1/4 is much
less than 6. The change in the quantity s, in time can hence be neglected, and s, and 7* can be considered
constants (an analysis of the stability of the "frozen" state).

Let us set

' = f,Fe* coskx, U = Ve* sin kx,
1,16
o = e coskx, s — Se* coskx, ( )

g, = Q™ coskx, II' = Tle* coskx.
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We hence have from (1.11)-(1,15)
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We finally have the relationship (a is the jet radius)
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Eliminating F, V, Z, I, Q,andS from the relationships (1.17) and (1.18), we obtain the characteristic
equation in the form
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which has been obtained for fast processes and can consequently be used only to seek the roots satisfying the
inequality pé > 1, ‘In this case it can be simplified and results in the form
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According to the formulas presented above

a* — In*a/0 = —%— as, — %- £0s, — 3na/6.

We therefore finally obtain
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The right side of the relationship (1.20) is negative if
3i(e— 1) 5, + 20/8] > a/a. (1.21)

Therefore, if the inequality (1.21) is satisfied, fast-growing perturbations (with 8> 1) cannot exist and
the growth rate of the perturbations is on the order of 1/8 (in other words, viscoelastic effects hence contribute
to stabilizing the jet relative to axisymmetric perturbations).

Let us note that according to [4], namely, the case € > 1 corresponds to the phenomenon of becoming a
strand which is typicalfor elasticoviscous fluids.

§2. Let us consider the same problem within the framework of the rheological model of an elasticovis~
cous fluid proposed by Leonov [5]. In this case all the distinctions reduce to writing the rheological relation~
ship differently, which has the following form in its simplest version in the Leonov model [5]:
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Here C is the elastic strain tensor, I; and I, are its first and second invariants, and & is the unit tensor.

We have for the quasi-one-dimensional motion under consideration
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Linearizing these relationships relative to the unperturbed state (Cy, a;, qg, v =0) yields
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Setting
C' = C*e" coskx, V'=Ve" sinkx, @.8)
we have from (24) and (2.7)
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Comparing (2.9) and (2.10) with the last relationships (1.17), we see that these relationships agree if §
and 6* are identical and®/ 3CH*¥G(2 + C0'3 %) is taken as n* Consequently, we obtain the characteristic equa-
tion in the form
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for the "fast" perturbations, Taking account of the expressions for 7* and 6* and the relationship (2.5), we have
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Therefore, for sufficiently high initial tensions C,
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the right side of (2.11) is negative for all wave numbers k and growth of the perturbations turns out to be im-
possible.

§3. Up to now only one destabilizing factor, the surface tension, was taken into account. The dynamic
action of the air can also turn out to be essential for capillary jets moving in air at sufficiently high veloci-
ties. Considering the air motion relative to the jet to be potential, then following Weber [6] the appropriate
characteristic equation can easily be obtained in the long-wavelength approximation. The component
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is hence added to the right side of the appropriate equation [(1.19) or (2.11)], where p; is the air density, U is
the air velocity relative to the jet, f; is the function introduced by Weber (K, is the Macdonald function):

fo® =—K, €)/Ko ©)- (3.2)
In the long wavelength domain ak < 1, f; <1, Hence, the sufficient condition for jet stabilization (neg-

lecting capillary forces) has the following respective forms for the models considered in Secs. 1 and 2:
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In other words, elastic tension stabilizes the capillary jet around which air flows, with respect to axisymmetric
perturbations if the "elastic" stresses are on the order of the dynamic head of air.

This last result should be considered qualitative since the assumption about the potential nature of the
airflow exaggerates the effect of the air (see [7], for instance), however, it yields a correct representation
about the necessary order of the stabilizing stresses.

NOTATION
o is the density;
i is the viscosity;
o is the surface tension;
0 is the fluid relaxation time;
a, f = na,
and II= 272 are the radius, area, and perimeter of the jet section;
X is the longitudinal coordinate;
v is the longitudinal velocity;
g is the axial stress;
g’ is the stress tensor deviator;
8 is its axial component;
A/AL is the symbol of the Jaumann derivative;

e is the strain rate tensor;
P is the pressure;
da is the capillary pressure;
7 is the perturbation growth increment;
T is the characteristic time;
k is the wave number; the subscript 0 denotes the unperturbed values and the prime denotes per-
turbations;
G is the elastic shear modulus;
C is the elastic strain tensor;
is a dimensionless constant.
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